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Abstract
A cantilever is a thin beam that is fixed at one end. The end that is not fixed is free to 
oscillate. This analysis involved a single aluminum cantilever. A PASCO 750 interface 
and a motion sensor II were used to record the motion of the cantilever. The data was 
analyzed to find the frequency and modes of oscillation of the beam. A stopwatch can 
be used for lower frequencies. The frequency of oscillation is inversely proportional to 
the square of the cantilever’s length and independent of amplitude. This relation led to 
a dynamic calculation of flexural rigidity. We extended the analysis to include a static 
calculation for the flexural rigidity using Young’s modulus and the second moment of 
area along with other means of ensuring an intensive self-consistent analysis.
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The cantilever is used in many applications as far apart as construction to
microelectromechanical systems. A couple examples are a cantilever barn and an
atomic force microscope. They are shown below:

The Euler-Lagrange equation for a dynamic beam is:

This gives us two boundary conditions for the fixed end:

These boundary conditions, along with two new ones, can be used to
determine the mode shapes from the solution for the displacement. The new
initial conditions are when t=0 for both velocity and displacement of the beam:
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F(x) becomes:

Where C is an arbitrary constant which is normally complex. This function
determines the mode shapes. When graphing mode shapes C=1 is often
chosen. The function with respect to time becomes:
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Where ρ is linear mass density, E is Young’s modulus, I is the second moment of area,
u is the deflection of the beam, and q is the distributed load. The Euler-Lagrange
equation is used to determine the function that minimizes the functionless S. For a
classical dynamic beam, the Euler-Lagrange equation becomes:

In our case, E and I are independent of position, x, and there is no external load, so the
equation becomes:

This equation helps determine the deflection of the beam at a position x and time t.
This equation can be solved by Fourier decomposition of the displacement into the sum
of harmonic value:

where ωn is the natural frequency of vibration. This gives us the ordinary differential
equation:

The general solution of this equation is:

where:

Boundary considerations:
Since the beam equation contains a fourth order derivative of x, we need four boundary
conditions to find a unique solution u(x,t). At the fixed end of the beam there can be no
displacement or rotation of the beam. This means at the fixed end both deflection and
slope are zero. At the free end since there is no external bending moment applied the
bending moment is zero. Also since there is no external force applied, the shear force
at the free end is zero.

and two conditions for the free end:
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If we apply these conditions, non-trivial solutions are found when:
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The first few modes are:

Each displacement solutions is called a mode and the shape of the 
displacement curve is called the mode shape. The corresponding frequencies 
of vibration for the modes are determined by:
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Where p(x) is the initial displacement and v(x) is the initial velocity of the beam.
Using separation of variables, the periodic solution can be written as a product
of position and time functions. This is done by letting the response equal the
product of the independent position and time functions, and setting them equal
to a positive separation constant:
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From graphing equation 12, the mode solutions can be graphically shown. The
first three modes are where the function intersects the x-axis:

The first three mode shapes(Mode 1 blue, mode 2 yellow, mode 3 green):

Cantilever Specs
Length, l (m) Width, w (m) Thickness, t(m) Mass, m (kg)

0.9165 0.0382 0.0033 0.1945

Data
Length, l (m)

0.3125 162

0.400 98

0.499 64.4

0.6065 43.75

0.699 32.2

0.7665 27.55

0.869 21.43

Data Summary

The dynamic flexural rigidity can be calculated from A in the fit from:

(EQ.19)
Static flexural rigidity can be calculated from the dimensions of the bar, and
the known Young’s modulus for aluminum:

Static K Dynamic K

4.33 4.30

Experiment
With one end of the cantilever fixed, the frequency was measured for various 
lengths. A stopwatch can be used but since the frequency is inversely 
proportional to the square of the cantilever’s length it is easier to do at longer 
lengths. The position versus time is then graphed and the angular frequency is 
found via a fit or a fast Fourier transform. The modes of oscillation can also be 
analyzed at this point. 

The results between the static and dynamic flexural rigidity are very close. The
analysis could be extended to different size and material cantilevers to see if
results are consistent.
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